.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/03_Advanced/plot_06_fitting.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_03_Advanced_plot_06_fitting.py: .. _plot_06_fitting: ============================= Using the DNPLab Fit function ============================= This example demonstrates how to use the DNPLab fit function on a dnpdata object. .. GENERATED FROM PYTHON SOURCE LINES 13-15 The following example shows how the autophase function can be conveniently used. To get started, first, setup the python environment: .. GENERATED FROM PYTHON SOURCE LINES 15-19 .. code-block:: Python import dnplab as dnp import numpy as np .. GENERATED FROM PYTHON SOURCE LINES 20-22 Let's generate a test data set with some noise the test data is a lorentzian distribution with some noise added .. GENERATED FROM PYTHON SOURCE LINES 22-34 .. code-block:: Python pts = 1024 x = np.r_[-50:50:1j*pts] np.random.seed(101) values = dnp.math.lineshape.lorentzian(x, 0, 0.5, 1.5) values += np.random.randn(pts)*0.05 data = dnp.DNPData(values, ['f2'], [x]) .. GENERATED FROM PYTHON SOURCE LINES 35-37 Now we guess the initial parameters of the fit we create a spectrum with the initial guess to compare to our test data .. GENERATED FROM PYTHON SOURCE LINES 37-44 .. code-block:: Python init_guess = [0, 0.5, 1.0] guess_values = dnp.math.lineshape.lorentzian(x, *init_guess) guess = dnp.DNPData(guess_values, ['f2'], [x]) .. GENERATED FROM PYTHON SOURCE LINES 45-47 now we perform the fit the output is a dictionary of DNPData objects containting the "fit" and optimal parameters "popt" .. GENERATED FROM PYTHON SOURCE LINES 47-56 .. code-block:: Python out = dnp.fit(dnp.math.lineshape.lorentzian, data, 'f2', init_guess) fit = out['fit'] popt = out['popt'] print('Optimal Fit Values') print(popt.values) # print optimal fitting values .. rst-class:: sphx-glr-script-out .. code-block:: none Optimal Fit Values [0.00447601 0.48848853 1.48903162] .. GENERATED FROM PYTHON SOURCE LINES 57-58 Now we plot the data, initial guess and fit .. GENERATED FROM PYTHON SOURCE LINES 58-65 .. code-block:: Python dnp.plt.figure('data') dnp.plot(data, label = 'data') dnp.plot(guess, label = 'guess') dnp.plot(fit, label = 'fit') dnp.plt.legend() dnp.plt.show() .. image-sg:: /auto_examples/03_Advanced/images/sphx_glr_plot_06_fitting_001.png :alt: plot 06 fitting :srcset: /auto_examples/03_Advanced/images/sphx_glr_plot_06_fitting_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.076 seconds) .. _sphx_glr_download_auto_examples_03_Advanced_plot_06_fitting.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_06_fitting.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_06_fitting.py ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_